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ABSTRACT: A new dual-polarization (DP) radar synthetic quantitative precipitation estimation (QPE) product was

developed using a combination of specific attenuation A, specific differential phase KDP, and reflectivity Z to calculate

the precipitation rate R. Specific attenuation has advantages of being insensitive to systematic biases in Z and differ-

ential reflectivity ZDR due to partial beam blockage, attenuation, and calibration while more linearly related to R than

other radar variables. However, the R(A) relationship is not applicable in areas containing ice. Therefore, the new DP

QPE applies R(A) in areas where radar is observing pure rain, R(KDP) in regions potentially containing hail, and R(Z)

elsewhere. Further, an evaporation correction was applied to minimize false light precipitation related to virga. The

new DP QPE was evaluated in real time over the conterminous United States and showed significant improvements

over previous radar QPE techniques that were based solely onR(Z) relationships. The improvements included reduced

dry biases in heavy to extreme precipitation during the warm season. The new DP QPE also reduced errors and spatial

discontinuities in regions impacted by partial beam blockage. Further, the new DP QPE reduced wet bias for scattered

light precipitation in the southwest and north central United States where there is significant boundary layer

evaporation.

KEYWORDS: Freshwater; Precipitation; Hydrometeorology; Radars/Radar observations; Remote sensing; Flood events

1. Introduction
High-resolution and high-accuracy quantitative precipita-

tion estimation (QPE) is a key component for many applica-

tions in agriculture, manufacturing, flash flood detection, river

flood prediction, water resource managements, and climate

assessments. The observation of precipitation requires various

remote sensing systems and networks encompassing surface

rain/snow gauges, radar, and satellite. Among them, ground

radar networks currently provide the highest spatial and tem-

poral resolution QPEs that are a critical input for flash flood

warnings.

Beginning in the 1990s, the National Weather Service

Weather Surveillance Radar-1988 Doppler (WSR-88D) net-

work has been producing an operational radar QPE identified

as the Precipitation Process System (PPS; Fulton et al. 1998).

While PPS provided high-resolution precipitation distributions

in areas that were lacking in gauge observations, it suffered

contamination from nonmeteorological returns especially in

spring and fall seasons when anomalous propagations (AP)

and biological echoes (so-called ‘‘blooms’’) were most

pronounced. The WSR-88D network was upgraded to dual-

polarization (DP) in 2011–13, which included a near surface

hydrometeor classification (HC; Park et al. 2009) and a DP

radar QPE (Giangrande and Ryzhkov 2008) algorithm im-

plemented at each radar site. The HC was based on fuzzy logic

principles and membership functions utilizing all DP radar vari-

ables. The advancements in HC provided a much-improved

identification of nonhydrometeor returns over the single-

polarization (SP) radar techniques. Subsequently, the DP

QPE (also called ‘‘DPR’’ for digital precipitation rate;

https://training.weather.gov/wdtd/courses/dualpol/documents/

DualPolRadarPrinciples.pdf) had less contamination from

anomalous propagation clutter and biological scatters than

PPS. The DPR QPE, based on reflectivity Z, differential

reflectivity ZDR, and specific differential phase KDP, provided

improved precipitation estimates (less mean bias) over SP PPS

in some warm season events when the freezing level was ele-

vated. However, it had relatively large random errors due to its

high sensitivity to errors in ZDR (Cocks et al. 2017). DPRQPE

is also subject to discontinuities and biases near the melting

layer (Cocks et al. 2016).

Recent DP radar QPEs utilizing specific attenuationA have

shown less sensitivities to calibration errors in Z and ZDR

(Ryzhkov et al. 2014; Wang et al. 2014, 2019; Cocks et al. 2019;

Ryzhkov and Zrnić 2019), and a higher linearity was found

between R (rain rate) and A than between R and other radar

variables (Ryzhkov et al. 2014; Ryzhkov and Zrnić 2019).

Further, A is immune to partial beam blockages (Cocks et al.

2019). While KDP has similar advantages, the estimation of

KDP requires smoothing along the radial which results in a

degradation of the spatial resolution. Conversely, A provides

rain rate estimates at the native radar resolution in a wider

range of rain intensities as opposed to KDP, which is noisy in

light rain (Ryzhkov et al. 2014).

Despite the successes, previous R(A) studies were limited

in single radar framework and only applied in areas where

the radar beam is below the melting layer (ML). Further,

those studies focused mainly on wide spread heavy rain near

the radar. To make R(A) useful in an operational environ-

ment across a large national radar network, two additional

steps are necessary: 1) to combine R(A) with other radarCorresponding author: Jian Zhang, jian.zhang@noaa.gov
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QPE techniques and establish a synthetic scheme that is ap-

plicable everywhere and 2) to assess the R(A) performance for

all rain regimes including light and sporadic ones and to de-

termine an optimal combination of R(A) and other radar QPE

relationships. The current study focused on these two steps and

developed a seamless DP synthetic QPE for the conterminous

United States (CONUS) domain within the Multi-Radar

Multi-Sensor (MRMS; Zhang et al. 2016) system.

The MRMS DP synthetic QPE (‘‘Q3DP’’ in short for the

third generation ofMRMS radar QPE) calculates R based on a

combination of A, KDP, and Z. While A has the aforemen-

tioned advantages for rain rate estimation, it is not applicable

in radar observations that contain ice. Therefore, Q3DP ap-

plies R(A) relationship in areas where radar is observing pure

rain and R(KDP) in areas with potential presence of hail. The

area of pure rain was defined as where the radar observations

were below the ML bottom and Z , 50 dBZ. The ML bottom

was determined from the temperature sounding at the radar

site and the correlation coefficient rHV field (Wang et al. 2019).

The area of potential hail is defined as Z $ 50 dBZ. The R(Z)

with a vertical profile of reflectivity (VPR) correction (Zhang

and Qi 2010; Zhang et al. 2012a) was applied within and

above the ML.

The Q3DP was tested, evaluated and refined in real-time

across CONUS since October 2016. This paper provides an

overview of the DP radar synthetic QPE and its performance

during September and October 2018, where a relatively stable

R(A) version was applied. Section 2 describes the Q3DP

methodology and section 3 presents the evaluation results

across CONUS during September and October 2018. A sum-

mary follows in section 4.

2. Methodology
Figure 1 shows an overview flowchart of the MRMS DP

synthetic QPE process. The input data includes DP radar

moments and environmental data such as the 3D tempera-

ture field on constant heights above the mean sea level,

freezing level height and surface wet bulb temperature. A

DP radar data quality control (QC; Tang et al. 2014) is ap-

plied to remove nonprecipitation echoes. After the QC, the

differential phase fDP field is further processed for addi-

tional quality assurance. The fDP processing include four

steps. The first step includes a speckle filter and a rHV

screening. The speckle filter checks for each fDP pixel and

counts the number of nonmissing fDP pixels in a 4.58 km 3
2.25 km box centered at the given pixel. If the number is less

than 50% of the box total, then the given fDP pixel at the

center is removed. A rHV . 0.8 filter was applied to remove

noisy and unreliable fDP data potentially associated with

hail, severe nonuniform beam filling, or other residual

contaminations after the DP QC. The second step unfolds

the fDP field based on the gate-to-gate fDP change and

adjusts the unfolded fDP field to assure a monotonic in-

crease trend with range. The third step applies a 6.25 km

radial running mean through all nonmissing fDP pixels to

further reduce random errors and fluctuations. Finally, a

linear interpolation along the radial is applied to fill in any

gaps in the fDP field.

Specific differential phaseKDP is calculated via a local linear

fitting to fDP along the radial direction in areas where hail

might be present. Specific attenuationA is calculated following

the steps presented in Wang et al. (2019) and the steps are

briefly reintroduced below for easy reference:

FIG. 1. An overview flowchart of the MRMS DP radar synthetic QPE.
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Here r is the range at a given gate, r1 is the nearest gate with

precipitation in a given radial and r2 the last precipitation gate

or the gate just below the bottom of the melting layer, which-

ever is closer to the radar. The ML bottom was approximated

by a weighted mean of the 108 and 08C heights at the radar site

and refined by the correlation coefficient (rHV) field (Wang

et al. 2019). The Za is the measured reflectivity, b is a constant

(0.62 for S band; Ryzhkov et al. 2014), PIA is the path-

integrated attenuation, and a is a parameter that generally

varies with drop size distributions and with temperature

(Ryzhkov et al. 2014; Wang et al. 2019). Pixels in [r1, r2] with

potential hail contamination are excluded from the PIA

calculation. Note that reflectivity Za in Eq. (1) appeared in

both the nominator and denominator, which effectively

removes any systematic biases in the reflectivity observations

when calculating A. Therefore, A is insensitive to systematic

biases in Za such as those from partial blockage, calibration,

and attenuation.

In the current scheme, a is estimated from the 0.58 tilt data
using the ‘‘ZDR slope’’ K:

a520:75K1 0:048 75, (6)

whereK is a linear fit to the median ZDR values of each 2-dBZ

reflectivity bin between 20 and 50 dBZ range (Fig. 2). Equation (6)

was obtained from disdrometer data and supported by an analysis

of ;10 events with wide spread moderate to heavy precipitation

events from different geographical regimes. Figure 2 illustrates the

process of a calculation. For the mesoscale convective system

(MCS) near KDDC (Figs. 2a–c) on 7 May 2019, there was

an apparent increase of ZDR with increasing Z, indicating

the presence of large rain drops in the convective system.

The ZDR slope was relatively large (K 5 0.0445 dB dBZ21)

FIG. 2. (a),(d) Reflectivity Z; (b),(e) differential reflectivity ZDR; and (c),(f) Z–ZDR scatterplot from (top) KDDC at 2120 UTC 7 May

2019 and (bottom)KLTX at 1325UTC 16 Sep 2018. The black circles indicate the estimated bottom of themelting layer. The black dots in

(e) and (f) indicate median ZDR values, and the white dashed lines represent the linear fit to the median ZDR vs Z.
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and a relatively low (0.0154) and close to those for convective

rain (Ryzhkov et al. 2014; Cocks et al. 2019; Wang et al. 2019).

For the Hurricane Florence case near KLTX (Wilmington,

North Carolina), on 16 September 2018 (Figs. 2d–f), the ZDR

slope was relatively flat (K5 0.0242) and a (0.0306) was higher

and closer to a tropical type rain value.

Equation (6) is used to estimate a only when there are suf-

ficient Z–ZDR data pairs in each 2-dBZ bin between 20 and

50 dBZ. If not enough Z–ZDR data pairs are found between 20

and 50 dBZ, the number of Z–ZDR pairs in each 2-dBZ bin

between 10 and 30 dBZ is checked. If significant data samples

were found between 10 and 30 dBZ, then the precipitation is

considered pure stratiform and a default stratiform a (0.035) is

applied. Otherwise, a new linear fit may be applied to the

median ZDR values between 10 and 40 dBZ range if sufficient

Z–ZDR pairs were found in that range. If insufficient data pairs

were found between 10 and 40 dBZ, the precipitation is con-

sidered sporadic. A default convective (0.015) or stratiform

(0.035) a is applied depending on the reflectivity intensities.

Once a is obtained and A calculated for each radar gate,

precipitation rates are estimated fromA on the 0.58 tilt in areas

where reflectivity is below 45 dBZ (an adaptable parameter):

FIG. 3. Precipitation rate fields from the mosaic of (a) R(A) 1 R(KDP), (b) multiple R(Z), and (c) the final

synthetic QPE. (d) A category field that represents the radar variables from which the rate was obtained. Green

represents areas with R(A), blue R(Z), red R(KDP), and yellow a weighted mean of R(A) and R(Z). The data were

valid at 0320 UTC 21 May 2019.

FIG. 4. (a) Q3RAD and (b) Q3DP 24-h QPE vs gauge daily observations for the period of 15 Sep–31 Oct 2018.

Blue dotted lines show a linear fit to the data and red solid lines a 1:1 fit.
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R(A)5 4120A1:03. (7)

Here the R(A) relationship is for S band at 208C (Ryzhkov

et al. 2014). The 45-dBZ constraint is to prevent R(A) from

potential hail contamination. Above 50 dBZ (an adaptable

parameter), two R(KDP) relationships are applied depending

on the correlation coefficient rHV field:

R(K
DP

)5 29:0jK
DP

j0:77, if r
HV

, 0:97 , (8a)

R(K
DP

)5 44:0jK
DP

j0:822, if r
HV

$ 0:97 . (8b)

Equation (8a) was derived using disdrometer measurements in

the proximity of selected hailstorms in central Oklahoma, and

Eq. (8b) provided optimal performance in heavy rain with large

drops (Ryzhkov et al. 2005), also in centralOklahoma.Between 45

and50dBZ, a linear combinationofR(A) andR(KDP) is applied to

create a smooth transition between the two rates. The R(A) and

R(KDP) are calculated from the 0.58 tilt currently with two addi-

tional constraints applied: 1) the beam blockage must be less than

90%and 2)DfDPmust be greater than 08. If the blockage is$90%

or DfDP # 08 in a given radial, the rate values for all the pixels

in that radial are set tomissing andR(Z)-based rateswill be applied

in the synthetic process at a later time (Fig. 1).

Precipitation rate fields estimated via R(A) and R(KDP)

from individual radars are mosaicked through a physically

based scheme shown in Qi and Zhang (2017). Since R(A) is

only valid below the melting layer, the mosaic has data voids in

areas far away from the radars or when there are radar outages.

Figure 3a shows such a mosaic where KEAX radar was missing

and the R(A)1 R(KDP) fields from the nearby radars (KTWX

and KSGF) were not able to fill the gap. The R(Z)-based QPE

(Q3RAD) (Fig. 3b) did not have this limitation and was able to

capture the full area of precipitation. Q3RADwas based on an

automated precipitation classification and multiple R(Z) rela-

tionships and was described in Zhang et al. (2016). The mul-

tiple R(Z) relationships include

stratiform: R
stra

5max (0:0365Z0:625, 0:1155Z0:5); (9)

convective: R
conv

5 0:017Z0:714 ; (10)

tropical : R
trop

5b0:010Z0:833 , (11)

where b is a ratemultiplier ranging from 1.0 to 1.5 depending on

the month of the year and the proximity to frequent hurricane

zones (Zhang et al. 2016; Cocks et al. 2017). For the coastal areas

of theGulf ofMexico, theAtlantic, and the southeastern United

States, b can be as high as 1.45 for September and 1.5 for

October. The convective R(Z) was capped at 49 dBZ

(53.8 mm h21 or 2.1 in. h21) for hail.

Q3RAD is used to fill in precipitation areas in Q3DP where

the radar beam intersects or overshoots the melting layer

(Fig. 3c). To prevent discontinuities betweenR(A) andR(Z), a

weighted mean of the two rates is applied in a transition zone

(default width: 50 km) near the outer boundary of R(A) (i.e.,

the yellow colored area in Fig. 3d). Finally, an evaporation

correction is applied to the mosaicked precipitation rate field

based on the methodology given by Martinaitis et al. (2018).

The correction factor is a function of the rate, the height of the

radar estimate, and atmospheric properties between the radar

data height and the ground. The correction helps reduce false

light precipitation in the radar QPE due to virga.

3. Evaluations
Q3DP was evaluated across CONUS during the period of

15 September–31 October 2018. Figure 4 shows scatterplots

of the Q3DP and Q3RAD 24-h QPEs versus CoCoRaHS

(Community Collaborative Rain, Hail and Snow Network,

TABLE 1.Hit/miss rates of theQ3RADandQ3DP 24-hQPEs for predefined gauge 24-h rainfall categories. The bold numbers indicate the

better hit rates among the two products.

Gauge 24 h (in.) G , 0.5 0.5 # G , 1 1 # G , 2 2 # G , 4 G $ 4

No. of samples 53 478 13 796 9834 3404 710

Category VL L M H VH

Q3RAD 24 h VL 0.93 0.31 0.03 0.00 0

L 0.06 0.59 0.39 0.04 0.00

M 0.01 0.10 0.54 0.49 0.03

H 0 0.00 0.04 0.42 0.49

VH 0 0.00 0.00 0.05 0.48

Q3DP 24 h VL 0.95 0.34 0.04 0.01 0

L 0.05 0.54 0.32 0.03 0.00

M 0.00 0.12 0.57 0.30 0.02

H 0 0.00 0.07 0.60 0.29

VH 0 0.00 0.00 0.06 0.69

TABLE 2. Mean bias ratio (MBR), correlation coefficient (CC),

mean absolute error (MAE), and fractional MAE of the Q3RAD

andQ3DP24-hQPEs for predefined gauge 24-h rainfall categories.

The bold numbers indicate the better scores among the two

products.

Category VL L M H VH

G-mean (in.) 0.17 0.71 1.37 2.66 5.45

Q3RAD MBR 1.19 0.91 0.82 0.80 0.81

CC 0.69 0.39 0.43 0.52 0.57

MAE (in.) 0.09 0.21 0.38 0.78 1.73

fMAE (%) 52.94 29.58 27.74 29.32 31.74

Q3DP MBR 1.04 0.91 0.88 0.92 0.95

CC 0.68 0.39 0.49 0.59 0.71

MAE (in.) 0.08 0.22 0.36 0.59 1.14

fMAE (%) 47.06 30.99 26.28 22.18 20.92
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www.cocorahs.org/; Cifelli et al. 2005) gauge observations.

The scores listed in the plots are defined as follows:

mean bias ratio (MBR): MBR5Q/G , (12)

where
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1

N
�
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i
2G

i
j , (14)

fractional MAE: fMAE5 1003MAE/G . (15)

The variableN is the total number of QPE–gauge pairs for the

given dataset; Qi and Gi are the radar estimated and gauge

observed 24-h rainfalls at the ith gauge station, respectively.

Q3DP showed a reduction in systematic bias and random

errors over Q3RAD, especially for the heavy amounts higher

than 2 in. (Fig. 4). The improvements for the heavy amounts

are also reflected in the hit/miss rates (Table 1) and the statistic

scores (Table 2) for different rainfall categories. The categories

are subjectively defined as very light (VL: G , 0.5 in.), light

(L: 0.5 # G , 1 in.), moderate (M: 1 # G , 2 in.), heavy

(H: 2 # G , 4 in.), and very heavy (VH: G $ 4 in.). The hit

rates of Q3DP were about the same as Q3RAD in the VL, L,

andM categories (Table 1) but significantly higher in theH (0.6

vs 0.42) and VH (0.69 vs 0.48) categories. Q3RAD had a 19%

overestimation bias (Table 2) in the VL rain and 18%, 20%,

FIG. 5. The 24-h (a) Q3RAD and(b) Q3DP ending at 1100 UTC 15 Sep 2018 overlaid with dots representing

CoCoRaHS gauge sites. The size of the dots represents gauge observed amounts and the color represents the gauge/QPE

bias ratios. (c),(d) Scatterplots of the two QPEs in (a) and (b), respectively, vs gauges. The statistic scores in the

scatterplots are the domain mean QPE/gauge bias ratio (Q/G), correlation coefficient (CC), and mean absolute error

(MAE). The solid blue and dashed black circles highlight areaswhere theQ3RADandQ3DPhad notable differences.
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and 19% underestimation biases in the M, H, and VH rain,

respectively. Q3DP reduced the biases by 15%, 6%, 12%, and

16% for VL, M, H, and VH categories, respectively, and re-

mained the same for the L category. A similar trend was found

in the MAE score, where Q3DP reduced the errors for VL, M,

H, and VH categories but slightly increased the error in the L

category (Table 2). For correlation coefficient, Q3DP was

about the same as Q3RAD in the VL and L and was higher in

the M–VH categories.

Q3DP showed a significantly reduced uncertainty with re-

spect to Q3RAD for rainfall amounts above ;3 in. (Fig. 4).

The reduced uncertainty in Q3DP was also reflected in its

higher hit rates (Table 1) and lower MAEs/fMAEs (Table 2)

for the H and VH categories. Q3DP reduced the fMAE by

;6%, 7%, and 11% for the VL, H, and VH categories, re-

spectively, while the fMAEs of Q3DP and Q3RAD for the L

and M categories remained similar. Q3DP appeared to be

slightly inferior to Q3RAD in the light rain category (Tables 1

and 2). Detailed analyses of individual events are presented

below to help understand the potential physical processes as-

sociated with the aforementioned error characteristics.

Figure 5 shows the Hurricane Florence event in the first 24 h

after its landfall. Q3RAD and Q3DP had similar MBRs (1.09

vs 0.98) and CCs (0.93 vs 0.93), while the latter had a lower

MAE (0.64 vs 0.53 in., Fig. 5). Q3RAD was running an en-

hanced tropical R–Z [b5 1.45, Eq. (11)] for most of the region

throughout the period yet still underestimated around KLTX

when compared to CoCoRaHS gauges (blue circle, Fig. 5a).

Q3DP had less underestimation and matched gauge observa-

tions better (blue circle, Fig. 5b) than did the Q3RAD esti-

mates. The underestimation inQ3RADwas likely due to a tree

blockage to the southwest of KLTX (Raleigh-Durham, North

Carolina; blue circle, Fig. 6a). The R(A)-based QPE was less

impacted by the blockage (blue circle, Fig. 6b) and yielded

QPE amounts that matched better with gauges (Fig. 5b).

Q3RAD had an overestimation around KRAX (black

dashed circle; Fig. 5a), which was likely due to dry air en-

trainments to the northwest of the hurricane and a lower pre-

cipitation efficiency than in coastal areas. The enhanced

tropical R(Z) was not representative of the liquid water con-

tent in this region. Time series of the hourlyMBR (Fig. 7) from

Q3RAD, Q3DP, and Q3DP without the evaporation correc-

tion within ;80 km of KRAX showed that the R(Z)-based

estimates were on average ;50% higher than the gauge ob-

served values. The R(A)-based estimates reduced the wet bias

to ;13% (Fig. 7), demonstrating the advantage of R(A) over

R(Z) in accurately capturing the liquid water amount. The

evaporation had little effect in this case due to the heavy rain

and moist environment.

Figure 8 shows an event of fast moving MCSs in South

Dakota and Minnesota on 18 September 2018 that was asso-

ciated with strong winds and hail. Q3RAD (Fig. 8a) was pri-

marily using the convective R–Z relationship [Eq. (9)] with a

cap of 53.8mmh21 in hail areas (Zhang et al. 2016). It had a

54% overestimation bias on the 24-h scale (Fig. 8d) and the

overestimation was especially high near KMPX (Minneapolis,

Minnesota) radar (white circle, Fig. 8a). Based on storms re-

ports of strong winds up to 60 kt (;31m s21) during the event

(https://www.spc.noaa.gov/climo/reports/180917_rpts.html),

there were likely issues of gauge undercatch and/or clogging by

hailstones. As a result, the actual overestimation may not be as

high as 50%. The R(A) 1 R(KDP) reduced the overestimation

by 8% (Fig. 8e vs Fig. 8d) and the evaporation correction

further reduced it by 12% (Fig. 8f vs Fig. 8e). The evaporation

correction was found to be a main contributor to the improved

hit rate of Q3DP over Q3RAD (Table 1) and reduced bias

(Table 2) in the VL category.

Figure 9 shows a large-scale heavy rain event associated with

two slow moving frontal systems across northern Oklahoma

and central Texas. Q3RAD was mostly based on an enhanced

tropical R(Z) [b ’ 1.2, Eq. (11)] during the event and had a

systematic underestimation bias for rainfall amounts greater

than 2 in. (Fig. 9c). Q3DP reduced the overall bias by 17%

(Fig. 9d) and the MAE was reduced by ;22% (Fig. 9d vs

Fig. 9c). For rainfall amounts greater than 4 in., Q3DP reduced

the bias by 35% and MAE by 44%. The improvements were

mostly in areas close to the radars [KFWS (Ft. Worth, TX),

KFDR (Frederick/Altus Air Force Base, OK), KINX (Tulsa,

FIG. 6. The same (a) Q3RAD and (b) Q3DP as in Fig. 5, but zoomed into KLTX area and without the gauge

overlay.
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OK), KSRX (Fort Smith, AR), KLZK (Little Rock, AR)] and

attributed to R(A). This and the Hurricane Florence event

demonstrated the superior performance of R(A) in heavy to

very heavy rainfalls and are consistent with the better hit rates

and lower biases and MAEs in Q3DP (Tables 1 and 2).

Figure 10 shows a synoptic-scale precipitation system with a

mix of convective and stratiform precipitation in the north-

eastern United States. Q3RAD was running convective R(Z)

[Eq. (10)] in the leading edge and stratiform R(Z) [Eq. (9)] in

the trailing region over 90% of the time. The enhanced tropical

FIG. 7. Time series of hourly mean bias ratios for Q3RAD (blue dots), Q3DP (green dots),

and Q3DP without evaporation correction (red dots) from 1200 UTC 14 Sep to 1100 UTC 15

Sep 2018. The red dashed line indicates a bias ratio of 1.00 (i.e., no bias). The domain average

hourly gauge observations are shown as gray stars.

FIG. 8. As in Fig. 5, but for the 24-h (a),(d) Q3RAD; (b),(e) Q3DP without the evaporation correction; and (c),(f) Q3DP ending at

1200 UTC 18 Sep 2018 in South Dakota and Minnesota. The white circle indicates an area of significant overestimation in Q3RAD.
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R(Z) [b ’ 1.5, Eq. (11)] was applied in small areas around

KBOX (Boston, Massachusetts) during 0600–0800 UTC

3 October 2018. Q3RAD performed well when compared with

the gauges in the southern half of the domain but had signifi-

cant underestimation in the northern half where precipitation

was mainly stratiform (Figs. 10a,c).

Q3DP reduced the underestimation bias in Q3RAD, espe-

cially for rainfall amounts greater than 2 in. (red dashed line,

Fig. 10d vs Fig. 10c). However, Q3DP had a significant over-

estimation around KBOX (black circle in Fig. 10b and blue

dashed line in Fig. 10d). The Z and ZDR fields (Figs. 11a,b)

from 0535 UTC 3October 2018 indicated moderate convective

rain in the leading edge with Z 5 45–50 dBZ (Fig. 11a) and

ZDR 5 0.6–1.5 dB (Fig. 11b). Due to the relatively low inten-

sities of the convection, there was not enough Z–ZDR samples

above 44 dBZ (Fig. 11c) for a ‘‘valid’’ ZDR slope between 20

and 50 dBZ range.As a result,R(A) scheme applied the default

stratiform a (0.035) for the entire precipitation period. A re-

lationship between a and ZDR from a large disdrometer

dataset for S band (Fig. 2 in Wang et al. 2019) indicated that

a varied between 0.024 and 0.014 for ZDR of 0.6–1.5 dB. The

default stratiform amight have been too high and contributed

to the overestimation in Q3DP around KBOX. A modified

R(A) scheme that adjusts the rate based on local Z and ZDR

distributions is currently undergoing tests and will likely miti-

gate such overestimation errors with mixed stratiform and

weak convective rain regimes.

The Q3DP andQ3RAD performance around KGYX (Portland,

Maine) was mixed. Q3RAD had apparent blockage artifacts to

the southeast of KGYX (white circle, Fig. 10a), which was

known to be tree-related. The R(A) mitigated the blockage

artifacts and resulted in slightly higher amounts in the area

(white circle, Fig. 10b) but still had an underestimation com-

pared to gauges. To the north where the rain was lighter, R(A)

QPE had lower amounts and more underestimation than

Q3RAD. The underestimation was likely due to two factors:

1) the differential phase changes [DfDP; Eq. (5)] in the radials

were too small; and 2) the default stratiform a (0.035) was too

low and unrepresentative of drop size distributions (DSDs)

in the region. The current Q3DP applies R(A) in all radials

with DfDP . 08 (section 2). However, attenuation may be too

weak to provide a useful R(A) estimate when DfDP was ,38.

FIG. 9. As in Fig. 5, but for 24-h (a),(c) Q3RAD and (b),(d) Q3DP ending 1200 UTC 22 Sep 2018 in Oklahoma,

northern Texas, and western Arkansas.
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A refined R(A) scheme with higher DfDP thresholds (28–38) is
currently undergoing tests to mitigate such underestimation.

When DfDP is below the predefined threshold, R(Z) will be

used instead of R(A).

The reflectivity to the north of KGYX was mostly below

30 dBZ (Fig. 11d) and ZDR was below 0.3 dB (Fig. 11e) during

the event. The a–ZDR relationship in Wang et al. (2019) indi-

cated that for S band at ;208C, a value was 0.04–0.08 for ZDR

values of 0.3 dB or less, which wasmuch higher than the default

stratiform a of 0.035 (Fig. 11f). The low a used in this case was

likely a contributing factor of R(A) underestimation in the low

Z/low ZDR area to the north of KGYX as well as to the south.

This is an opposite problem to the overestimation near KBOX,

but both situations indicated a need to refine the default

stratiform a for an improved R(A) accuracy in areas of light

stratiform rain (underestimation) and in areas of mixed

stratiform/weak convective rain (overestimation).

Figure 12 shows an event of mixed stratiform and strong con-

vective rain inNebraska,Kansas andOklahomawhereQ3DPhad

an underestimation. Q3RAD was applying convective R(Z) in

the leading edge and stratiform R(Z) in the trailing stratiform

region during the event. Q3RAD performed well when com-

pared with the gauges except for an area midway between

KUEX (Hastings, Nebraska) and KICT (Wichita, Kansas)

where some overestimation was observed (black dashed line,

Fig. 12a). An examination of reflectivity and correlation co-

efficient fields (not shown) indicated that the overestimation

was a result of bright band contamination. While a VPR cor-

rection (Zhang and Qi 2010; Zhang et al. 2016) was applied in

Q3RAD to mitigate such contamination, the correction as-

sumed an isotopic bright band structure in the radar domain

and was not as effective when the bright band was highly non-

isotropic, as it was in this case. An enhanced VPR correction

scheme based on dual-polarization variables and azimuthally

varying bright band structure is under development in Q3DP

and will further reduce the bright band contamination.

Q3DP had distinct underestimation errors around KUEX

and KICT (black circles, Fig. 12b). The underestimation

around KUEX was associated with light stratiform rain and

unrepresentative defaulta (0.035) for lowZ/lowZDR areas and

FIG. 10. As in Fig. 5, but for 24-h (a),(c) Q3RAD and (b),(d) Q3DP ending at 1100 UTC 3 Oct 2018 in the

northeast. The black circle indicates an area of significant Q3DP overestimation and white circle an area of tree

blockage. The blue (red) dashed lines in (c) and (d) indicate different overestimation (underestimation) of Q3RAD

and Q3DP with respect to gauges.
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was similar to the 3 October KGYX case. An examination of

hourly Q3DP QPEs near KICT revealed that the most signif-

icant underestimation errors occurred between 0200 and

0600 UTC 9 October 2018, where a stratiform rain was present

to the northwest of the radar and a strong convective rain was

to the southeast (Figs. 13a,b). The strong convective rain

dominated the ZDR slope (Fig. 13c) and resulted in a values

ranging from 0.018 to 0.020 during 0200–0600 UTC. These

a values are more representative of the convective precipita-

tionDSDs to the southeast but not for the stratiform rain to the

northwest where a should be higher (.0.025) based on the low

Z (,35 dBZ) andZDR (,0.5 dB) values. The unrepresentative

a resulted in the underestimation in Q3DP (black circle at

KICT, Fig. 12b vs Fig. 12c). Such underestimation errors in

mixed stratiform/strong convective rain and overestimation in

mixed stratiform/weak convective rain (e.g., KBOX event on

3 October) had contributed to the uncertainties in Q3DP for

daily rainfalls below 3 in. Meanwhile, the underestimation

errors in light stratiform rain (e.g., KGYX on 3 October and

KUEX on 9 October) associated with the default stratiform a

(0.035) had contributed to the lower hit rate (Table 1) and

larger MAE in Q3DP for the L category (Table 2) than in

Q3RAD. The local adjustment to the R(A) scheme based onZ

and ZDR distributions as mentioned earlier should mitigate

these errors and improve the Q3DP performance in light rain

category.

Figure 14 shows a heavy rain event associated with

Hurricane Michael after its landfall. Q3DP had less underes-

timation bias (10% vs 17%), higher correlation coefficient (0.9

vs 0.87) and lower MAE (0.40 vs 0.48 in.) than Q3RAD. One

notable difference between Q3DP and Q3RAD was with the

heavy rainfall between KGSP and KMRX (black circle,

Figs. 14a,b) where Q3RAD had significant underestimation

and Q3DP compared well with gauge observations. A typical

high-efficiency a ranging from 0.0287 to 0.0390 was applied in

R(A) and contributed to a more accurate estimation (black

circle, Fig. 14b). In Q3RAD, a mixture of stratiform [Eq. (9)]

and enhanced tropical [b 5 1.5; Eq. (11)] R(Z) were applied

throughout the event in the area. The Q3RAD underestima-

tion could partially be due to the R(Z) relationships being

unrepresentative of the local DSDs. In addition, there were

significant beam blockages in the region from both KMRX

(Knoxville/Morristown, Tennessee) and KGSP (Greer, South

Carolina) as shown in the radar QPE quality index (RQI;

Zhang et al. 2012b) field (Fig. 15). RQI is a function of the

hybrid scan beam height, blockage, and freezing level height. It

decreases with increasing blockages, increasing beam heights

and decreasing freezing levels. Even though the hybrid scan

FIG. 11. (a),(d) Reflectivity Z; (b),(e) differential reflectivity ZDR; and (c),(f) Z–ZDR scatterplot from the 0.58 tilt of (top) KBOX at

0535 UTC 3 Oct and (bottom) KGYX at 2100 UTC 2 Oct 2018. The black circles indicate the estimated bottom of the melting layer.
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reflectivity in Q3RADwas adjusted for partial beam blockages

before R(Z) was applied, the adjustment may not be accurate

when the real-time beam propagation deviates significantly

from what it was under a standard atmosphere. Thus, the

Q3RAD underestimation could also be due to the partial

blockages inZ field. This case shows the advantage of theR(A)

over R(Z) in areas of partial beam blockages.

Another notable differencewas in a light rain (24-h accumulations

, 1 in.) area between KMRX and KHTX (Huntsville/Hytop,

Alabama) where Q3DP underestimated (white dashed line,

Figs. 14a,b). This is similar to the underestimation issue in the

3 October KGYX (Fig. 10a) and 9 October KUEX cases

(Fig. 12a). The R(A) estimates from both KHTX and KMRX

used default stratiform a (0.035) over the rainfall period. Yet the

lowZ (,35 dBZ) and lowZDR (0–0.2 dB) values indicated that a

higher a should be applied based on the a–ZDR relationship

shown in Wang et al. (2019). It is noteworthy that both Q3RAD

and Q3DP had significant underestimation in areas of radar

‘‘gaps’’ with low RQI values (white circles, Figs. 14 and 15). The

underestimation was likely associated with the vertical variations

of reflectivity and a lack of radar observations near the ground.

Figure 16 was a wide spread stratiform rain event in the

Pacific Northwest. The majority of CoCoRaHS gauges re-

ported 1–2-in. accumulations for the 24-h period ending

1400 UTC 28 October 2018. Q3RAD had a 24% underesti-

mation bias and 0.27-in. MAE (Figs. 16a,d). The most signifi-

cant underestimation was from areas far away from the radars

(white dashed lines, Fig. 16) where the radar beam overshot the

precipitation processes near the ground. Q3DP without the

evaporation correction (Figs. 16b,e) showed a superior per-

formance over Q3RAD and reduced the underestimation bias

to 19% andMAE to 0.24 in. However, Q3DPwith evaporation

correction (Figs. 16c,f) resulted in the worst underestimation

bias (30%) and MAE (0.31 in.) among the three QPEs. The

detrimental effect of the evaporation correction for this spe-

cific case was a combination of 1) radar QPE was significantly

underestimating in areas far away from the radar and 2) the

limitations in the evaporation correction scheme (Martinaitis

et al. 2018). Mitigation of such errors in poor radar coverage

area remains a challenge and requires a multisensor approach

using additional in situ and remote sensing observations and

atmospheric model data.

FIG. 12. As in Fig. 5, but for 24-h (a),(c) Q3RAD and (b),(d) Q3DP ending at 1200 UTC 9 Oct 2018 in Nebraska,

Kansas, andOklahoma. The black circles highlight areas with notable differences betweenQ3RADandQ3DP and

the dashed black line an area of overestimation associated with bright band.

2518 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 08:03 PM UTC



4. Summary
A new dual-polarization radar synthetic QPE (Q3DP) was

developed in the MRMS system for improved accuracy of

precipitation estimation. Q3DP was based on the specific

attenuation A, the specific differential phase KDP, and re-

flectivity Z. It applies the R(A) relationship in areas where

radar is observing pure rain,R(KDP) in areas with potential hail

presence, and a vertical profile–corrected R(Z) elsewhere.

FIG. 13. As in Fig. 11, but for radar KICT at 0500 UTC 9 Oct 2018.

FIG. 14. As in Fig. 5, but for Georgia, South Carolina, and North Carolina at 1100 UTC 11 Oct 2018. The black

circle and white dashed line highlight two areas with notable differences between Q3RAD and Q3DP. The white

circles indicate areas of poor low-level radar coverage.
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The vertical profile correction is to account for large reflectivity

variations in and above the melting layer. An evaporation

correction based on precipitation rate, radar observation

height and environmental humidity was applied to minimize

false precipitation associated with subcloud evaporation.

Q3DP was evaluated across CONUS during a period of

September–October 2018 and showed significant improve-

ments over a current operational QPE based onmultipleR(Z).

The improvements included 1) less underestimation in areas

subject to partial beam blockage and in severe attenuation

situations due to the insensitivity of R(A) to systematic errors

in Z and ZDR fields and 2) a reduction of both systematic and

random errors in warm season heavy rainfall regardless of

precipitation regimes and geographic locations. The improve-

ment in 2) was attributed to amore linear relationship between

A and liquid water amounts than other radar variables.

Another contributing factor was the dynamically updated pa-

rameter a in the R(A) scheme that captures temporal varia-

tions of DSDs better thanR(Z). The extensive evaluations also

indicated a few areas whereQ3DP needed further refinements:

1) in very light and sporadic rain where the attenuation signal is

too weak, R(Z) may provide better estimates than R(A) and

should probably be applied instead of R(A); 2) in wide spread

light stratiform rain, the current default a (0.035) might be too

low; 3) some local adjustments of R(A) may be needed for

more accurate estimates in precipitation of mixed regimes

where the Z–ZDR data samples are dominated by one regime.

Each of these refinements are currently being tested and as

appropriate will be implemented as part of the Q3DP.
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